1 2 3 4	Performance of the VITEK MS v2.0 system in distinguishing Streptococcus pneumoniae from non-pneumococcal species of the Streptococcus mitis group
5 6	John A. Branda ^{1,2} #, Rachelle P. Markham ¹ , Cherilyn D. Garner ³ , Jenna A. Rychert ^{1,2} and
7	Mary Jane Ferraro ^{1,2}
8 9 10	Department of Pathology, ¹ Massachusetts General Hospital and ² Harvard Medical
11	School, Boston, Massachusetts
12	³ R&D Microbiology, bioMérieux, Inc., Hazelwood, MO
13 14 15 16	Running title: Pneumococcal vs non-pneumococcal strep using mass spec #Corresponding author address:
10	55 Fruit St., GRB-526
18	Boston, MA 02114-2696
19	Telephone: 617-726-3611
20	Fax: 617-726-5957
21	Email: jbranda@partners.org
22	
S	Email: jbranda@partners.org

23 Abstract

	24	The VITEK MS v2.0 MALDI-TOF mass spectrometry system accurately distinguished S.
	25	pneumoniae from non-pneumococcal S. mitis group species. Only 1 of 116 non-
	26	pneumococcal isolates (<1%) was misidentified as <i>S. pneumoniae</i> . None of 95
	27	pneumococcal isolates was misidentified. This method provides a rapid, simple means of
	28	discriminating among these challenging organisms.
	29	
	30	Short-form paper
	31	Using conventional phenotypic identification methods, it has been challenging for
	32	clinical laboratories to distinguish accurately between bacterial species within certain
	33	groups, such as the coagulase-negative staphylococci or the nonfermenting gram-negative
	34	bacilli. The Streptococcus mitis group is another set of closely-related species between
	35	which conventional identification methods cannot reliably differentiate. The most
	36	important pathogen within the S. mitis group, S. pneumoniae, is conventionally
	37	distinguished from the others (S. mitis, S. oralis, S. pseudopneumoniae, S. sanguinis, S.
	38	parasanguinis, S. gordonii, S. cristatus, S. infantis, S. peroris, S. australis, S. sinensis, S.
	39	orisratti, S. oligofermentans, and S. massiliensis) based on its susceptibility to optochin
	40	or its solubility in bile. However, both the sensitivity and specificity of optochin
	41	susceptibility testing are suboptimal. Some S. pneumoniae strains are optochin resistant
	42	[1-3], and closely related species such as S. pseudopneumoniae or S. mitis can exhibit
	43	optochin susceptibility, particularly when incubated in ambient air rather than CO2-
$\overline{\Box}$	44	enriched air [4-8]. Likewise, the most convenient method of bile solubility testing, the
2^{\vee}	45	plate method, is relatively non-specific [9] and some strains of S. pneumoniae are bile

IBUT

46	insoluble even by the tube method [10] or the disk method [11]. Even when larger
47	batteries of phenotypic tests are applied, such as the API rapid ID 32 Strep strip or the
48	VITEK 2 GP card (bioMérieux, Marcy l'Etoile, France), discrimination among species
49	within the S. mitis group is poor [12]. In fact, S. mitis group species are so closely related
50	that the AccuProbe Streptococcus pneumoniae assay (Hologic Gen-Probe, Inc., San
51	Diego, CA), a commercially-available DNA probe hybridization test, cannot differentiate
52	between S. pneumoniae and S. pseudopneumoniae isolates [4, 6], and 16S rRNA gene
53	sequencing cannot reliably distinguish between S. pneumoniae, S. mitis and S. oralis [13,
54	14].
55	Recent investigations have demonstrated the ability of matrix-assisted laser
56	desorption/ionization mass spectrometry (MALDI-TOF MS) to distinguish between
57	closely related bacterial species with a high degree of confidence [15-23]. Yet with
58	regard to the S. mitis group species initial reports have been disappointing, inasmuch as
59	one widely-used, commercially-available MALDI-TOF MS platform is prone to
60	misidentify S. mitis, S. oralis or S. pseudopneumoniae as S. pneumoniae [7, 11, 24-29].
61	However, other commercial platforms may perform differently in this regard. In
62	particular, a recent multi-center evaluation of the bioMérieux VITEK MS v2.0 system
63	demonstrated accurate separation between 51 S. pneumoniae strains and 71 non-
64	pneumococcal strains from the S. mitis group, although for one S. mitis isolate the system
65	did report a split identification that included S. pneumoniae among the alternatives [30].
66	Here, we used a larger collection of S. mitis group clinical isolates to assess the
67	performance of the bioMérieux VITEK MS v2.0 system in differentiating S. pneumoniae
68	from other S. mitis group species.
	 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

69	The study included 211 S. mitis group clinical isolates selected from frozen
70	archives at Massachusetts General Hospital. None of the study isolates overlapped with
71	those entered into the recent multi-center evaluation of the bioMérieux VITEK MS v2.0
72	system [30]. In our laboratory, all clinical isolates identified as S. pneumoniae by
73	conventional phenotypic methods during calendar year 2012 had been archived, and 100
74	of these isolates were randomly selected for the present study by choosing every second
75	unique isolate recovered between January and November 2012. Most of the isolates had
76	been recovered from respiratory or blood specimens, and had been identified prior to
77	archiving as S. pneumoniae by examination of colonial and microscopic morphology, and
78	optochin susceptibility testing in CO2-enriched air. Also included in the present study
79	was a convenience sample of 111 archived clinical isolates that had been identified prior
80	to archiving as S. mitis based on conventional phenotypic methods, which included
81	examination of colonial and microscopic morphology, and characterization using the API
82	20 Strep strip (bioMérieux). Between approximately 1995 and 1998, all S. mitis isolates
83	that required full species identification for clinical purposes (most of which had been
84	recovered from blood or deep tissue) were archived in our laboratory. For the present
85	study, we selected the first 111 unique, viable isolates we could locate in the frozen
86	archive.
07	

87 Each of the 211 isolates included in this study was identified using the VITEK
88 MS v2.0 system (bioMérieux, Marcy l'Etoile, France) after overnight growth on tryptic
89 soy agar with 5% sheep blood (Remel, Lenexa, KS). Isolated bacterial colonies were
90 applied (without prior extraction) to a single well of a disposable target slide, then
91 overlaid with a matrix solution and air-dried prior to analysis, as described previously

STRIBU

92 [30]. If the VITEK MS method provided a split-identification or no identification, the 93 isolate was re-analyzed once. If a single, species-level identification was provided upon 94 repeat analysis, this identification was considered to be the final VITEK MS result; if a 95 split identification or no identification was provided upon repeat analysis, no further 96 analysis was performed.

97 The outcome of identification using the VITEK MS was compared with the original (pre-archiving) phenotypic identification (Table 1). When the VITEK MS 98 99 identification matched the original phenotypic identification, no further testing was 100 performed. When there were discrepancies (N=32), supplementary methods were applied 101 to arrive at a definitive identification. These included bile solubility testing by the tube 102 method; parallel optochin susceptibility testing in ambient and CO₂-enriched air; analysis 103 using the VITEK 2 GP card (bioMérieux); application of the AccuProbe Streptococcus pneumoniae hybridization probe (Gen-Probe); and/or sequence analysis of the 16S rRNA 104 105 gene [31, 32], sodA gene [33], groEL gene [34] and/or recA gene (Table 2) [35]. All 106 gene sequences were edited using ChromasPro software (Technelysium, South Brisbane, 107 Australia) and analyzed using NCBI BLASTn and leBIBI V5 [36]. Gene sequencing and 108 analysis was performed by a scientist (CDG) at bioMérieux, who was blinded to the 109 VITEK MS results. All other methods were performed by independent investigators at 110 Massachusetts General Hospital. Using this approach, it was determined that the present 111 study included 95 S. pneumoniae isolates and 116 non-pneumococcal isolates from 112 within the S. mitis group (93 S. mitis/oralis, 12 S. parasanguinis, 2 S. australis, 2 113 probable S. australis, 3 S. pseudopneumoniae, 2 probable S. infantis, 1 S. cristatus, and 1 114 S. sanguinis).

Among 95 S. pneumoniae isolates, 94 (99%) were identified as S. pneumoniae by
the VITEK MS v2.0 system; the remaining <i>S. pneumoniae</i> isolate was not identified by
the VITEK MS (Table 1). Among 116 non-pneumococcal S. mitis group isolates, 102
(88%) were correctly identified to the species-level by the VITEK MS v2.0 system. Only
one of these 116 isolates (<1%), a probable <i>S. infantis</i> isolate according to sequence
analysis, was misidentified as S. pneumoniae (Table 2). Six additional non-
pneumococcal isolates were assigned the correct genus but incorrect species by the
VITEK MS v2.0 system; in each case, however, the incorrect identification placed the
isolate within the S. mitis group and did not classify it as S. pneumoniae (Table 2). Seven
non-pneumococcal isolates were assigned a split identification by the VITEK MS, but S.
pneumoniae was never included among the alternatives (Table 2). Notably, 6 of the 7
misidentified isolates, and 2 of the 7 isolates assigned a split identification, could not be
definitively identified by conventional phenotypic methods. Rather, these isolates
required nucleic-acid sequence-based analysis of multiple gene targets for confident
identification, demonstrating the challenging nature of these particular isolates. Also, 5
of the 7 misidentified isolates, and 1 of the 7 isolates assigned a split identification were
S. australis or S. infantis isolates according to the results of DNA sequence analysis;
these species are not represented in the VITEK MS v2.0 system database.
A limitation of this study is the fact that all clinical isolates were collected at a
single site (Massachusetts General Hospital), and thus there was not broad geographic
representation. However, the present study's findings are similar to those of a recent
multi-center study in which the VITEK MS v2.0 system's performance was determined
at 5 geographically diverse trial sites [30]. Compared with the multi-center study, the

JCM Accepts published online ahead of print

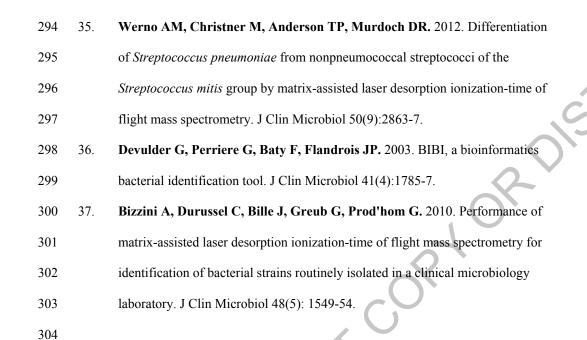
138	present study included a larger number of S. mitis group clinical strains, none of which
139	had been included in the multi-center study. A second limitation of the present study is
140	the potential for selection bias. The non-pneumococcal isolates, unlike the <i>S</i> .
141	pneumoniae isolates, were chosen by convenience rather than by a truly random selection
142	process. And, although the S. pneumoniae isolates were chosen randomly and were
143	unique isolates (only one isolate from an individual patient was included), it is possible
144	that a clone (identical strain) could have been circulating among some of the patients
145	from whom the isolates were derived. Finally, in this study we avoided performing a
146	protein extraction step prior to analysis using the VITEK MS system, even when the
147	VITEK MS provided no identification or a split identification. Although this was done in
148	order to challenge the system in the most stringent fashion, the addition of an extraction
149	step is known improve MALDI-TOF MS performance [37], and had it been applied it
150	may have influenced our findings.
151	In summary, MALDI-TOF MS using the VITEK MS v2.0 system provides an
152	accurate, fast, inexpensive and technically non-demanding means of discriminating
153	between S. pneumoniae and other S. mitis group species. Adoption of this method in the
154	clinical laboratory may improve the ability to make this clinically-relevant distinction.
155	
156	Acknowledgements

157 This work was funded by bioMérieux, Inc. MJF, JAB, and JAR have received research
158 funding from bioMérieux and Becton Dickinson for other research investigations, but do
159 not have a financial interest in either company. CDG is employed by bioMérieux, Inc. in
160 the R&D division.

161 References

161	Refer	ences
162	1.	Munoz R, Fenoll A, Vicioso D, Casal J. 1990. Optochin-resistant variants of
163		Streptococcus pneumoniae. Diagn Microbiol Infect Dis 13(1):63-6.
164	2.	Phillips G, Barker R, Brogan O. 1988. Optochin-resistant Streptococcus
165		pneumoniae. Lancet 2(8605):281.
166	3.	Pikis A, Campos JM, Rodriguez WJ, Keith JM. 2001. Optochin resistance in
167		Streptococcus pneumoniae: mechanism, significance, and clinical implications. J
168		Infect Dis 184(5):582-90.
169	4.	Arbique, JC, Poyart C, Trieu-Cuot P, Quesne G, Carvalho Mda G,
170		Steigerwalt AG, Morey RE, Jackson D, Davidson RJ, Facklam RR. 2004.
171		Accuracy of phenotypic and genotypic testing for identification of Streptococcus
172		pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J Clin
173		Microbiol 42(10):4686-96.
174	5.	Spellerberg B, Brandt C. 2011. Streptococcus, p 331-349. In Versalovic J,
175		Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (ed). Manual of
176		clinical microbiology, 10 th ed. Washington, DC.
177	6.	Keith ER, Podmore RG, Anderson TP, Murdoch DR. 2006. Characteristics of
178		Streptococcus pseudopneumoniae isolated from purulent sputum samples. J Clin
179	. 2	Microbiol 44(3):923-7.
180	7.	Wessels E, Schelfaut JJ, Bernards AT, Claas EC. 2012. Evaluation of several
181		biochemical and molecular techniques for identification of Streptococcus
182		pneumoniae and Streptococcus pseudopneumoniae and their detection in
183		respiratory samples. J Clin Microbiol 50(4):1171-7.

		184	8.	Borek AP, Dressel DC, Hussong J, Peterson LR. 1997. Evolving clinical
		185		problems with Streptococcus pneumoniae: increasing resistance to antimicrobial
		186		agents, and failure of traditional optochin identification in Chicago, Illinois,
ìnt		187		between 1993 and 1996. Diagn Microbiol Infect Dis 29(4):209-14.
D		188	9.	Richter SS, Heilmann KP, Dohrn CL, Riahi F, Beekmann SE, Doern GV.
-jo		189		2008. Accuracy of phenotypic methods for identification of Streptococcus
ad		190		pneumoniae isolates included in surveillance programs. J Clin Microbiol
ahe		191		46(7):2184-8.
e 0		192	10.	Obregon V, Garcia P, Garcia E, Fenoll A, Lopez R, Garcia JL. 2002.
nilr		193		Molecular peculiarities of the lytA gene isolated from clinical pneumococcal
ō		194		strains that are bile insoluble. J Clin Microbiol 40(7):2545-54.
epts published online ahead of print		195	11.	Ikryannikova LN, Lapin KN, Malakhova MV, Filimonova AV, Ilina EN,
lis		196		Dubovickaya VA, Sidorenko SV, Govorun VM. 2011. Misidentification of
duc		197		alpha-hemolytic streptococci by routine tests in clinical practice. Infect Genet
S		198		Evol 11(7):1709-15.
0		199	12.	Teles C, Smith A, Ramage G, Lang S. 2011. Identification of clinically relevant
		200		viridans group streptococci by phenotypic and genotypic analysis. Eur J Clin
\triangleleft		201		Microbiol Infect Dis 30(2):243-50.
ICM Acc		202	13.	Park HK, Yoon JW, Shin JW, Kim JY, Kim W. 2010. RpoA is a useful gene
Y		203		for identification and classification of Streptococcus pneumoniae from the closely
		204		related viridans group streptococci. FEMS Microbiol Lett 305(1):58-64.
	\mathcal{C}			
	2			
				9


205	14	Surahi N. Sahi M. Nahang V. Kinang V. Maang M. Vamashita V. 2005
205	14.	Suzuki N, Seki M, Nakano Y, Kiyoura Y, Maeno M, Yamashita Y. 2005.
206		Discrimination of <i>Streptococcus pneumoniae</i> from viridans group streptococci by
207		genomic subtractive hybridization. J Clin Microbiol 43(9):4528-34.
208	15.	Bizzini A, Jaton K, Romo D, Bille J, Prod'hom G, Greub G. 2011. Matrix-
209		assisted laser desorption ionization-time of flight mass spectrometry as an
210		alternative to 16S rRNA gene sequencing for identification of difficult-to-identify
211		bacterial strains. J Clin Microbiol 49(2):693-6.
212	16.	Dupont C, Sivadon-Tardy V, Bille E, Dauphin B, Beretti JL, Alvarez AS,
213		Degand N, Ferroni A, Rottman M, Herrmann JL, Nassif X, Ronco E,
214		Carbonnelle E. 2010. Identification of clinical coagulase-negative staphylococci,
215		isolated in microbiology laboratories, by matrix-assisted laser
216		desorption/ionization-time of flight mass spectrometry and two automated
217		systems. Clin Microbiol Infect 16(7):998-1004.
218	17.	Marko DC, Saffert RT, Cunningham SA, Hyman J, Walsh J, Arbefeville S,
219		Howard W, Pruessner J, Safwat N, Cockerill FR, Bossler AD, Patel R, and
220		Richter SS. 2012. Evaluation of the Bruker Biotyper and Vitek MS matrix-
221		assisted laser desorption ionization-time of flight mass spectrometry systems for
222		identification of nonfermenting gram-negative bacilli isolated from cultures from
223	2	cystic fibrosis patients. J Clin Microbiol 50(6):2034-9.
224	18.	Justesen US, Holm A, Knudsen E, Andersen LB, Jensen TG, Kemp M, Skov
225		MN, Gahrn-Hansen B, Moller JK. 2011. Species identification of clinical
226		isolates of anaerobic bacteria: a comparison of two matrix-assisted laser

1		227		desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol
		228		49(12):4314-8.
		229	19.	Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J,
nt		230		Hall G, Wilson D, Lasala P, Kostrzewa M, Harmsen D. 2008. Evaluation of
pri		231		matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in
of		232		comparison to 16S rRNA gene sequencing for species identification of
cepts published online ahead of print		233		nonfermenting bacteria. J Clin Microbiol 46(6):1946-54.
he		234	20.	Fedorko DP, Drake SK, Stock F, Murray PR. 2012. Identification of clinical
0 O		235		isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-
lin		236		time of flight mass spectrometry. Eur J Clin Microbiol Infect Dis 31(9):2257-62.
ю		237	21.	Verroken A, Janssens M, Berhin C, Bogaerts P, Huang TD, Wauters G,
bed		238		Glupczynski Y. 2010. Evaluation of matrix-assisted laser desorption ionization-
lish		239		time of flight mass spectrometry for identification of Nocardia species. J Clin
du		240		Microbiol 48(11):4015-21.
S P		241	22.	Jamal WY, Shahin M, Rotimi VO. 2013. Comparison of two matrix-assisted
		242		laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry
		243		methods and API 20AN for identification of clinically relevant anaerobic bacteria.
Ř		244		J Med Microbiol 62(Pt 4):540-4.
JCM Ac		245	23.	Nagy E, Maier T, Urban E, Terhes G, Kostrzewa M. 2009. Species
S		246		identification of clinical isolates of <i>Bacteroides</i> by matrix-assisted laser-
		247		desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect
		248		15(8):796-802.
~	2			
, C				11

249	24.	Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P,
250		Schrenzel J. 2010. Comparison of two matrix-assisted laser desorption
251		ionization-time of flight mass spectrometry methods with conventional
252		phenotypic identification for routine identification of bacteria to the species level.
253		J Clin Microbiol 48(4):1169-75.
254	25.	Stevenson LG, Drake SK, Murray PR. 2010. Rapid identification of bacteria in
255		positive blood culture broths by matrix-assisted laser desorption ionization-time
256		of flight mass spectrometry. J Clin Microbiol 48(2):444-7.
257	26.	Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J, Bougnoux ME,
258		Alanio A, Berche P, Nassif X. 2010. Real-time identification of bacteria and
259		Candida species in positive blood culture broths by matrix-assisted laser
260		desorption ionization-time of flight mass spectrometry. J Clin Microbiol
261		48(5):1542-8.
262	27.	Neville SA, Lecordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, van
263		Hal SJ. 2011. Utility of matrix-assisted laser desorption ionization-time of flight
264		mass spectrometry following introduction for routine laboratory bacterial
265		identification. J Clin Microbiol 49(8):2980-4.
266	28.	Davies AP, Reid M, Hadfield SJ, Johnston S, Mikhail J, Harris LG,
267	2	Jenkinson HF, Berry N, Lewis AM, El-Bouri K, Mack D. 2012. Identification
268	~	of clinical isolates of alpha-hemolytic streptococci by 16S rRNA gene
269		sequencing, matrix-assisted laser desorption ionization-time of flight mass
270		spectrometry using MALDI Biotyper, and conventional phenotypic methods: a
271		comparison. J Clin Microbiol 50(12):4087-90.

JCM Accepts published online ahead of print

	• •	
272	29.	van Veen SQ, Claas EC, Kuijper EJ. 2010. High-throughput identification of
273		bacteria and yeast by matrix-assisted laser desorption ionization-time of flight
274		mass spectrometry in conventional medical microbiology laboratories. J Clin
275		Microbiol 48(3):900-7.
276	30.	Rychert J, CA Burnham, M Bythrow, O Garner, C Ginocchio, R
277		Jennemann, M Lewinski, R Manji, B Mochon, G Procop, S Richter, L Sercia,
278		L Westblade, MJ Ferraro, J Branda. 2013. Multicenter evaluation of the
279		VITEK MS MALDI-TOF mass spectrometry system for the identification of
280		gram-positive aerobic bacteria. J Clin Microbiol (in press).
281	31.	Schmidt TM, Relman DA. 1994. Phylogenetic identification of uncultured
282		pathogens using ribosomal RNA sequences. Methods Enzymol 235:205-22.
283	32.	Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Delanghe J, Van
284		Simaey L, De Ganck C, Temmerman M, Vaneechoutte M. 2004. Cloning of
285		16S rRNA genes amplified from normal and disturbed vaginal microflora
286		suggests a strong association between Atopobium vaginae, Gardnerella vaginalis
287		and bacterial vaginosis. BMC Microbiol 4:16.
288	33.	Poyart C, Quesne G, Boumaila C, Trieu-Cuot P. 2001. Rapid and accurate
289		species-level identification of coagulase-negative staphylococci by using the sodA
290	2	gene as a target. J Clin Microbiol 39(12):4296-301.
291	34.	Glazunova OO, Raoult D, Roux V. 2009. Partial sequence comparison of the
292		rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst
293		Evol Microbiol 59(Pt 9):2317-22.

2EMEN ON

305 Table 1. Performance of the VITEK MS v2.0 system in distinguishing S. pneumoniae

306 from non-pneumococcal S. mitis group species.

T-11.1 T		2.0 motors in distin	istine C	Ś			
	Performance of the VITEK MS		uishing S. pneumo	oniae			
from non-	n non-pneumococcal S. mitis group species.						
		Identification by R	eference Methods	-			
		Non-pneumococcal					
		S. pneumoniae	species				
VITEK M	1S identification			2			
	S. pneumoniae	94					
	Non-pneumococcal species	0	108				
	Split identification ^a	0	7				
	No identification	1	0				
	Total	95	116				

307 308

^aFor these isolates, more than one possible identification was reported by the VITEK MS

- 309 instrument.
- 310

RENTER 311

312 Table 2. Resolution of discrepancies between original conventional identification and VITEK MS identification.

313					
	Original				Number
	conventional		Identification based		of
	identification	VITEK MS identification	on reference methods	Reference methods applied	isolates
	S. pneumoniae	S. pseudopneumoniae	S. pseudopneumoniae	BS, Opt, HProbe, 16S, sodA,	3
				groEL ^a	
	S. pneumoniae	S. mitis/oralis	S. mitis	BS, HProbe, 16S, sodA ^b	2 2
	S. mitis/oralis	S. parasanguinis	S. australis	16S, sodA	2
	S. mitis/oralis	S. parasanguinis	Probable S. australis	16S, sodA, groEL, recA	2
	S. mitis/oralis	S. parasanguinis	S. parasanguinis	VGP	12
	S. mitis/oralis	S. pneumoniae	Probable S. infantis	BS, Opt, HProbe, 16S, sodA,	1
				groEL, recA	
	S. mitis/oralis	S. cristatus	S. cristatus	16S, sodA	1
	S. mitis/oralis	S. cristatus	S. mitis	16S, sodA	1
	S. mitis/oralis	S. pseudopneumoniae	S. mitis	BS, Opt, VGP, HProbe, 16S,	1
				sodA	
	S. mitis/oralis	Split: S.mitis/oralis; S. parasanguinis	Probable S. infantis	16S, sodA, groEL, recA	1
	S. mitis/oralis	Split: S. anginosus; Vibrio cholerae;	S. mitis	16S, sodA	1
	Lactobacillus paracasei; Lactobacillus casei				
	S. mitis/oralis	Split: S. mitis/oralis; S. sanguinis	S. mitis/oralis	VGP	1
	S. mitis/oralis	Split: S. parasanguinis; Finegoldia magna	S. mitis/oralis	VGP	1
	S. mitis/oralis	Split: Prevotella denticola; Parvimonas	S. mitis/oralis	VGP	1
		micra; S. parasanguinis			
	S. mitis/oralis	Split: S. mitis/oralis; S. intermedius	S. mitis/oralis	VGP	1
	S. mitis/oralis	Split: S. parasanguinis; Bifidobacterium sp.	S. sanguinis	VGP	1

314

254154

315 Note: BS, bile solubility testing using the tube method; Opt, optochin susceptibility testing in parallel using CO₂-enriched air and

316 ambient air; HProbe, AccuProbe Streptococcus pneumoniae DNA hybridization probe; 16S, DNA sequencing of the 16S rRNA gene;

JCM Accepts published online ahead of print

16

STRIBU

317 sodA, DNA sequencing of the sodA gene; groEL, DNA sequencing of the groEL gene; VGP, VITEK 2 GP card; recA, DNA

COR

<

2

00

318 sequencing of the *recA* gene.

RENTER

- 319 ^a One of these 3 isolates was also analyzed by sequencing the *recA* gene.
- 320 ^b One of these 2 isolates was also analyzed by sequencing the groEL gene.
- 321
- 322

17

STRIBUT